

Assistive Lifeguard Technology

How the systems work and what the future holds Dan Jacklin - Editor, Water Incident Research Hub

State of play

What is the current state of play for ALT?

© 2023 The Water Industry Research Hub

Water Incident Research Hub

Introduction

What is assistive lifeguard technology?

Any technology that assists lifeguards make pools safer

What can incident detection ALT already do?

What support is available?

- Camera-based and wearable systems are in operation in the UK
- Speak to operators with existing ALT to understand their experience
- Consult the guidance for further support

Key point

26 peer-reviewed academic studies have been published on ALT, the first in 2002

"

Why is the science of ALTs important?

- To help operators understand the strengths and limitations of their systems
- To support risk assessors in undertaking a risk assessment
- To promote innovation amongst manufacturers

How camera-based ALTs work

How do camera-based ALTs detect drowning casualties?

Distinguishing pool users from the surroundings

- Divides the visual display into pixels
- Surfaces reflect different amounts of light
- Light sensors in the cameras measure the light reflected across a display
- Algorithm assigns each pixel a score for reflectivity
- Algorithm identifies 'clusters' with high reflectivity
- Each 'cluster' is assigned an identifier

Key point

The system is programmed to identify a 'cluster' as a person. This can lead other objects to be mistaken as persons

Distinguishing pool users from the surroundings

Benefits

- Essential for cameras to identify 'people' within the pool
- Suitable detection method for all age groups

Considerations

- Technology can be sensitive to colour and guest size
- Can mistake pool equipment (i.e., manikins, sinkers) for people
- Overhead cameras less effective than underwater cameras
- Negatively impacted by turbidity

Establishing orientation

- Algorithm used to position a best-fit ellipse around each 'cluster'
- Sometimes, a second ellipse distinguishes the arms relative to the body.
- Orientation of each ellipse is tracked relative to the pool basin.

Key point

This capability of ALT is likely to grow in significance as systems seek to reduce reliance on underwater cameras and reduce false alarms

"

Establishing orientation

Benefits

- Additional identification
 mechanism
- Also works with a heat signature from an infrared camera

- Many casualties do not drown from a vertical position
- Can be used to predict the direction of travel

Time submerged

- Overhead cameras cannot identify submersion.
- Underwater cameras regularly rely on submersion duration before sounding an alarm.
- Typically, submersion duration is measured by how long an object is stationary and submerged.
- Small children and equipment in the pool can trigger many false alarms, especially where this is the sole trigger relied on to activate an alarm.

Key point

Some casualties display involuntary movements after cardiac arrest or hypoxic blackout which can delay detection

Time submerged

Benefits

- All casualties submerge in fresh water, eventually
- Not affected by involuntary body movements

- Relies largely on
 underwater cameras
- Can't detect a casualty unconscious on the surface
- Timer re-starts each time casualty surfaces
- Hypoxic training can set off false alerts

Movement patterns

- Algorithm combines best-fit ellipse with light reflectivity data and trajectory to distinguish 'drowning' behaviours
- Systems are trained to look for:
 - Vertical position
 - Flailing arms
 - Followed by stationary horizontal orientation

Key point

Some systems are programmed to sound an alarm where a vertical orientation is accompanied by 'flailing' arms

"

Movement patterns

Benefits

- Additional identification mechanism
- In the future, deep learning is likely to improve the accuracy of detection significantly

- Many casualties do not display rapid arm movements before falling unconscious
- System can lead to a high number of false alerts

How wearable detection systems work

How do wearable ALTs detect 'drowning' casualties

Submersion detection

 Submersion sensor embedded in the wearable detects when a person becomes submerged and for how long

Benefits

- All casualties submerge in fresh water, eventually
- Not affected by involuntary body movements

- Can detect a casualty unconscious on the surface
- Timer re-starts each time casualty surfaces
- Hypoxic training can set off false alerts

Heart rate

- Watch monitors the electrical signal from the heart.
- If an abnormal rhythm is detected, the lifeguard and/or the user are alerted.

Benefits

• Can detect cardiac and respiratory events

- Delayed detection in hypoxic blackout cases
- Individual experiences trauma before detection

Looking to the future...

What is on the horizon for ALT

What do we want from our pools in the age of Industry 4.0?

Assistive Lifeguard Technology

© 2023 The Water Industry Research Hub

20

Water Incident Research Hub

What the future of pools might look like

Assistive Lifeguard Technology

"

From machine learning to deep learning

- Machine learning relies on programmable 'rules'
- Deep learning learns its own rules
- Deep learning requires thousands of hours of high-quality recordings with actual drowning events
- The real benefit of deep learning is more accurate detection rates

Greater third-party verification needed

- Need to differentiate system features and overall detection performance to support operators in selecting the right systems for them
- Independent third-party verification could help operators and protect manufacturers and reduce liabilities
- A clear categorisation and labelling system may help consumers and producers of guidance distinguish systems

Possible ALT categorisation

Categorising systems may make it easier to compare and contrast features and capabilities

Future considerations

- Develop new ALT guidance to cover beach systems
- Training for risk assessors to understand how to assess ALT systems

Key point

Know how your ALT system works and consider its strengths and weaknesses in your risk assessment

"

Questions?